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1 Equivalence in Cosmology

At the time when cosmic redshift was �rst observed, there were two known
causes of relativistic redshift, which are connected by an equivalence principle:
Doppler shift due to relative motion, and gravitational redshift. Early physicists
chose to interpret cosmic redshift initially as a Doppler shift. This subsequently
led to our current conception, where cosmic redshift is seen to be a consequence
of metric expansion. In this paper we will explore an alternate and equivalent
interpretation where redshift is understood in terms of a potential di�erence,
rather than relative motion.

Our understanding of the equivalence principle is formalized by comparing
two scenarios. In the �rst scenario, we have comoving frames (stationary relative
to each other) experiencing a di�erence in gravitational potential. In the second
scenario, we have two frames in a vacuum moving at a relative velocity v. These
two scenarios are considered equivalent if the potential energy of a test mass in
the �rst scenario equals the kinetic energy of an identical mass in the second
scenario. Given this equivalence, the amount of gravitational redshift observed
in the �rst scenario is identical to the amount of Doppler shift observed in an
equivalent second scenario.

The velocity v can be used to parameterize the redshift in either scenario.
In the �rst scenario it is taken abstractly, and in the second it is taken literally.

As it pertains to cosmology, these two equivalent scenarios characterize two
equivalent modes of redshift. On one hand, redshift described in terms of rela-
tive motion without a potential di�erence, while on the other equivalent hand,
redshift is described in terms of a potential di�erence without relative motion.

With this simple understanding of equivalence, we will derive a potential-
induced redshift pro�le, as a function of distance. This pro�le has very few
parameters to tune, and yet, when an expansion based analysis is applied, we
�nd rough agreement with standard cosmology, in terms of expansion histories,
accelerated expansion and dark energy.
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2 Modeling the Universe

The model we will use to develop our redshift pro�le is a universe consisting of
an in�nite, uniform, and very low gravitating density.

It turns out that this model is anything but simple. The di�culties asso-
ciated with analyzing an in�nite uniform density are well known [3], involving
ambiguous boundary conditions and con�icting solutions which are divergent.
Care is required in order to properly build, and interpret this model.

To begin, we will presume that the model universe is in a state of equilibrium.
Whether that equilibrium is stable or unstable is to be seen. Within this state
of equilibrium, we can make a few statements based on the symmetry of the
model:

� By symmetry, an observer located at any position will see a balanced
matter distribution, so that the gravitational �eld g⃗ must be zero at the
point of observation.

� Gravity operates to warp the reference frame, a�ecting how the observer
sees the distribution of density at distant locations. By symmetry, an
observer at any position cannot claim that the gravitation �eld g⃗ is zero
everywhere.

The result is that an observer may be considered an inertial observer, only
in the local sense. The reference frame of such an observer would be locally
inertial, and globally non-inertial. We use the label Lx to refer to the reference
frame of a locally inertial observer at x.

There are also signs of trouble, as expected. Due to warping in Lx, an
observer at x might determine that there should be a non-zero gravitational �eld
at y, even though, by symmetry, an observer at y detects no such gravitational
�eld. More importantly, if the observer at x doesn't necessarily see a uniform
density, due to the warping in the reference frame, then in what sense is the
statement of uniform density even meaningful? In which reference frame is the
density considered to be uniform?

We will make the statement of uniform density meaningful by introducing
a shared tangent space. Two locally inertial observers separated by a great
distance may have local tangent spaces which are parallel to each other, or in
other words, their local tangent spaces are shared. The speci�c hallmark of any
two observers who share their local tangent space is that they will both measure
the same local value of density.

We construct a globally inertial reference frame G, which is not the reference
frame of any single observer, but the shared tangent space of an entire class
of observers, spanning all points in the model. Relative to G, we may now
make a meaningful statement about a density ρg that is globally uniform1. The
application of symmetry to G indicates that in the shared tangent space, the
gravitational �eld g⃗ is zero everywhere.

1Throughout this paper, the subscript g will indicate a value that is measured in G, while

the corresponding value measured in Lx will be unsubscripted.
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Having equipped ourselves with a globally inertial frame G, we now move
on to analyze the warped reference frame Lx of a locally inertial observer at
point x. Our analysis of Lx will begin in the non-relativistic limit. We have
stated that the density ρg is very low, so the non-relativistic result should be
applicable within an appreciable domain, as well as reveal an intuition about
the nature of the problem we are dealing with.

3 Lx in the Classical Limit

The work to construct Lx will be done entirely in the �at and inertial reference
frame of G. This is speci�cally important because only in G does the concept
of a uniform density ρg make any sense.

The primary di�culty in constructing a local observer frame is determining
how gravity warps the coordinates of Lx. In the non-relativistic limit, we can
characterize this warping by �nding a potential function Φx associated with the
point x.

We begin by de�ning a sphere with radius rg centered on x. This sphere
divides the universe into two regions; inside and outside. We can calculate the
in�uence of gravity at points lying on the surface of the sphere by determining
the in�uence of matter from both of those regions.

For the outside region, we imagine that the sphere is surrounded by a shell
with thickness h. Due to the shell theorem, we know that points interior to
the shell are not gravitationally in�uenced by any matter inside of h. If we
allow h → ∞, we see that the entire outside region of the sphere does not
gravitationally in�uence points on the surface of the sphere at all.

For the inside region, the in�uence of gravity on surface points is given by a
standard radial potential.

Φx = −GM

rg
= −4π

3
Gρgr

2
g (1)

This potential has two apparent di�culties, which were previously foreshad-
owed. The �rst is that we could have chosen a di�erent point y around which to
construct our sphere, which would have led to a radial potential Φy whose �eld
gradients con�ict with the gradients of Φx. The second is that the radial poten-
tial diverges, resulting in an eventual in�nite force, suggesting a gravitational
collapse around the origin point.

We will address those di�culties by interpreting the potential de�ned in
(1) as very speci�cally describing the potential that the local observer expects,
and not necessarily as the potential that the local observer sees. This potential
warps the coordinates of Lx altering the perception of the local observer. As the
potential Φx grows large, the warping in the coordinates in Lx becomes more
extreme, and therefore more non-inertial.
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4 The Fictitious Potential

Making a distinction between expecting something and seeing something else
may not make sense at �rst, but remember: Lx is locally inertial and globally
non-inertial. Our experience with non-inertial reference frames tells us that
�ctitious forces will come into play, particularly for large values of rg. Fictitious
forces are artifacts that arise due to non-inertial observers interpreting their own
reference frame as if it were inertial. In other words, they expect one thing, and
end up seeing something else. One way to think of �ctitious forces, is that they
operate to resolve this con�ict. In our case, the con�ict can be seen in terms
of the description of the �eld gradients g⃗, which for G are zero everywhere, and
for Lx are not.

To be more speci�c, the warping of the coordinates in Lx suggest to a local
observer that a distant object must fall toward x. However, the inertial coordi-
nates in G predict that such distant objects do not experience any gravitational
force at all. The �ctitious force which reconciles this con�ict is seen by Lx to
push radially outward from x, operating as if to keep those distant objects from
falling.

Given this interpretation, the ambiguity in the solution of the potential can
be recast as an observational degree of freedom. Clearly, by symmetry, any local
observer will bear a reference frame that is locally �at, yet globally warped. If
the observer at y were to characterize that warping by a potential function Φy,
we would expect it to be symmetric in form to Φx.

More formally, if Φx de�nes the warping in the coordinates of the reference
frame Lx, then we would expect the observer at x to observe �ctitious forces
that would be described by −Φx. This �ctitious potential not only serves to
reconcile the perceived di�erence in �eld gradients between Lx and G, but also
between Lx and any other observer frame Ly.

In addition to resolving the con�ict between alternate reference frames, the
�ctitious potential also acts to resolve the diverging nature of Φx. As the warp-
ing in the coordinates diverges, the observed �ctitious potential −Φx also di-
verges in exactly the opposite direction, creating a perfect balance.

Let's now take a moment to summarize.
In an in�nite uniform density, we may construct a globally inertial frame G

which is the shared tangent frame for a class of local observers spanning all points
in the universe. Relative to G we may construct the speci�c reference frame Lx

of a local observer positioned at x, which is characterized in the non-relativistic
limit by the radial potential Φx. For any local observer, this potential takes the
same radial form, which implies a locally inertial frame, growing increasingly
non-inertial at large radial distance. Because local observers view the universe
through a non-inertial frame, artifacts arise at large values of rg. These artifacts
can be described by the apparent action of a �ctitious potential −Φx, which
appears to generate a force that pushes away from x, growing stronger as we
move further from x.
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5 Calculating Redshift

Returning to our original exercise, we desire to calculate redshift by examining
the di�erence in potential energy of two comoving frames separated by a distance
rg, and equate this to an equivalent kinetic energy. This means we are going to
parameterize the di�erence in potential energy by using an equivalent relative
velocity vg.

According to the results of the previous section, a local detector sees the
emitter at a distance rg as acting under the in�uence of a �ctitious potential
−Φx. The change in energy U due to this �ctitious potential acting on a test
mass m is

∆U = −4π

3
Gmρgr

2
g (2)

The minus sign indicates that the test mass appears to have lost energy as
it traversed the distance rg.

We now equate the magnitude of this potential energy to an equivalent
kinetic energy.

1

2
mv2g =

4π

3
Gmρgr

2
g (3)

The value vg is not the velocity of the emitter. It is the equivalent velocity
which parameterizes the di�erence in potential energy.

vg =

(
8π

3
Gρg

) 1
2

rg (4)

The test mass m has dropped out of the equation. We see that the velocity
vg is directly proportional to rg, consistent with observations of cosmic redshift.
We can de�ne the constant of proportionality in terms of what we might deem
to be the Hubble constant H0.

H2
0 =

8π

3
Gρg (5)

This de�nition of H0 is perfectly consistent with modern cosmology, in terms
of the critical density of a �at Universe. Making this substitution into (4) yields
the standard Hubble relation.

vg = H0rg (6)

6 The Relativistic Limit

The fact that we have used a classical approach up to this point leads us to
conclude that the standard linear Hubble relation is a non-relativistic approxi-
mation of a more accurate relativistic redshift law.
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If we examine the non-relativistic energy equivalence relation in (3) we can
conceive of associated relativistic corrections applied to both the kinetic and
potential energies, which will allow us to determine the fully relativistic law.

Kinetic energy can be expressed by subtracting the rest mass from the total
energy of a moving test mass.

K = γgmc2 −mc2 (7)

For potential energy, we will calculate the change in rest mass due to the
di�erence in the �ctitious potential. At the emitter, the rest mass is unmodi�ed,
but when that mass arrives at the detector it is modi�ed by a factor αg.

U = αgmc2 −mc2 (8)

An approximate value of αg ≈ 1 + ∆Φ
c2 was determined by Einstein in 1911

[2]. A more correct version of αg (as calculated in the appendix A) is given by
the exponent of the di�erence of the �ctitious potential.

αg = exp

(
∆(−Φx)

c2

)
= exp

(
H2

0r
2
g

2c2

)
(9)

If we equate the kinetic and potential energies we get

γgmc2 −mc2 = αgmc2 −mc2 (10)

The test mass m drops out, and we reduce to an elegant expression of the
equivalence principle, where the relativistic factor associated with the energy of
motion is equated to the factor associated with potential energy.

γg = αg (11)

This equation is the formal basis for the relativistic Hubble law.

7 Fictitious Metric

We might interpret the equivalence relation in (11) to mean that the correction
αg will have the same e�ect as γg in terms of dilating time, or contracting space.
This would be true if αg represented the warping potential Φx, but as it stands,
αg represents the correction due to the �ctitious potential −Φx. This means
that the correction is meant to undo the warping of the reference frame. In
other words, the correction must act to dilate space, and contract time. We use
this fact to construct a di�erential relationship between the coordinates of G
and the coordinates of Lx.

dt =
1

αg
dtg (12)

dr = αgdrg (13)
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In order to construct a metric for Lx, we start with the metric for G which
is a simple �at spherical coordinate system centered on x. Neglecting rotation,
we can assume that the angular di�erential dΩ is the same for both global and
local observers.

ds2g = dt2g − dr2g − r2gdΩ
2 (14)

We can apply the di�erential relationships (12) to express the metric in terms
of dt and dr.

ds2g = α2
gdt

2 − dr2

α2
g

− r2gdΩ
2 (15)

One way to describe �ctitious forces is that the non-inertial observer neglects
the warping of its own coordinates, which we can formalize here by assigning
ds = dsg.

The result is called the �ctitious metric, which we can think of as the ob-
servational lens through which local observers experiencing the gravitational
in�uence of the uniform density of the universe.

ds2 = α2
gdt

2 − dr2

α2
g

− r2gdΩ
2 (16)

Note the presence of the global coordinate rg. While the di�erential rela-
tionship between dr and drg is quite simple, determining a value for rg given
a value of r requires numerically solving for the upper limit of the following
integral.

r =

∫ rg

0

exp

(
H2

0x
2

2c2

)
dx (17)

Most quantities throughout will be given in terms of rg, with the expectation
that this value can be numerically determined from r when needed.

8 Relativistic Hubble law

Using (11) we can determine a relationship between αg and vg, which is essen-
tially the relativistic Hubble law as seen by the abstract global observer.

vg = c

√
1− 1

α2
g

= c

√
1− exp

(
−
H2

0r
2
g

c2

)
(18)

To determine the relativistic Hubble law for a local observer, we must �rst
determine the di�erential relationship between local and global velocity param-
eters dv and dvg.

dv = d

(
dr

dt

)
=

dr

drg

dtg
dt

d

(
drg
dtg

)
= α2

gdvg (19)
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We integrate dv over values of rg (done explicitly in appendix B) in order
to discover the locally observed velocity v. The result of this integral can be
expressed in terms of the inverse cosh function.

v =
c

2
cosh−1

(
2α2

g − 1
)
=

c

2
cosh−1

(
2 exp

(
H2

0r
2
g

c2

)
− 1

)
(20)

.
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Figure 1: Both the global (18) and local (20) velocity functions approach the
linear Hubble law (6) in the non-relativistic limit, which appears to be valid
for values of rg < 1250 Mpc. In the relativistic limit, we see a divergence in
behavior between the two functions. The velocity vg seen by the global observer
will asymptotically approach the speed of light, while for the local observer the
velocity v, having a slightly upward in�ection, will cross the speed of light
horizon at rg = 0.93 c

H0
.

This is the relativistic Hubble law for the local observer, relating the velocity
parameter v with the distance rg from the emitter. This law is de�ned for all
values of rg (up to the c horizon, and even beyond). The only parameter is the
density of the universe, encoded in H0

Provided the de�nition (20) for v, we can build an analogy with the energy
equivalence relation (11), and de�ne a value for α as seen by the local observer.

α =
1√

1− v2

c2

(21)

We employ this de�nition to begin developing useful relationships with the
logitudinal redshift parameter z.
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1 + z =

√
1 + v

c

1− v
c

= α+
√
α2 − 1 (22)

Inverting this relationship allows us to describe both α and v in terms of
redshift.

v = c
(1 + z)

2 − 1

(1 + z)
2
+ 1

(23)

α =
1

2

(1 + z)
2
+ 1

1 + z
(24)

Inverting (20) allows us to de�ne αg directly in terms of redshift.

αg =

√√√√1

2
cosh

(
2
(1 + z)

2 − 1

(1 + z)
2
+ 1

)
+

1

2
(25)

Inverting (9) allows us to de�ne rg directly in terms of redshift.

rg =
c

H0

√√√√ln

(
cosh

(
2
(1 + z)

2 − 1

(1 + z)
2
+ 1

)
+ 1

)
− ln (2) (26)

9 Correspondence with Standard Cosmology

The outcome of our analysis, so far, is a well de�ned Hubble relation, which
depends on very few parameters - primarily the value of H0. This relation
describes a redshift, as generated by a �ctitious metric, which is the consequence
of interpreting observations through a warped coordinate system as if it were
not warped.

On the other hand, the model of standard cosmology predicts a redshift rela-
tion, as generated by an expanding metric, which depends on many parameters.
We have spent the last century �tting those parameters to astronomical obser-
vations. Some of these parameters, such as the dark energy parameter, have a
well de�ned value, but an unclear signi�cance.

In order to determine correspondence with standard cosmology, we will apply
the same �tting operations to the redshift pro�le generated by the �ctitious
metric, and we will see if the parameters - speci�cally the dark energy parameter
- are within a reasonably expected range.

In order to bridge these two interpretations, we recognize that the expansion
based interpretation is a function of time, while the non-expansion based model
we are currently developing, is a function of space. We use the speed of light to
relate the space and time coordinates in the global coordinate system.

rg = −ctg (27)
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This expression takes the current moment tg = 0 to be the present, while
negative values of time in the past translate to positive radial distances.

In the expansion model, the metric scale parameter a can generally be as-
sociated with the redshift. We can also describe the redshift in terms of α
in the non-expansion model, as in (22). We can use this fact to develop the
correspondence relationship:

a = α−
√

α2 − 1 (28)

These relationships establish the basis of correspondence between the ex-
pansion and non-expansion models.

10 Friedmann Equations

The FLRW metric of the Big Bang explicitly scales the spatial coordinates
uniformly by a time dependent parameter a. The de�nition of metric expansion
allows the Hubble function to be de�ned in terms of the derivative of a.

H =
ȧ

a
(29)

Given the correspondence (28), we can determine a Hubble function directly
from the redshift of the �ctitious metric, labeled Hα.

Hα = α2H2
0

rg
vg

(30)

We can equate the Hubble function Hα to the �rst Friedmann equation in
order to determine a radial density function.

ρ = ρcα
4H2

0

r2g
v2g

(31)

We can also calculate the derivative of ρ.

ρ̇ = 2ρ

((
c

α2
gvg

− 2α2v

c

)
H2

0

rg
vg

− c

rg

)
(32)

We can insert these values into the continuity equation in order to develop
an equation of state, as predicted by the �ctitious metric.

p = wρc2 (33)

w = −
(
1 +

2

3

(
c

α2
gα

2vg
− 2v

c
− vgc

α2H2
0r

2
g

))
(34)

The parameter w can be evaluated as a function of redshift, or time as has
been plotted in Fig (2).
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Figure 2: The equation of state w describes how expansion evolves over time.
The horizontal dashed line indicates the threshold for accelerated expansion,
indicating an epoch of accelerated expansion out to around z = 0.5. The current
value of w characterizes a universe dominated by dark energy in the form of a
cosmological constant, while values corresponding to earlier times characterize
a universe dominated by baryonic matter, and even earlier, radiation.

While the overall shape of this curve does not include certain features from
standard cosmology such as in�ation, there are 3 rough features worth noting.
The current value of w = −1 characterizes a universe dominated by dark energy
in the form of a cosmological constant. The epoch where w < −1/3 characterizes
a universe in the state of accelerated expansion. The fact that w → 1/3 far in
the past characterizes a universe dominated by radiation energy. These epochs
roughly align with the picture of standard cosmology.

The redshift calculated from a �ctitious metric is entirely consistent with
the standard cosmological picture of a universe in a state of accelerated expan-
sion. In the non-expansion model, it is the warping in the coordinates that is
'accelerating'.

11 ΛCDM and Dark Energy

In this section, we will compare the Hubble function Hα determined by the
�ctitious metric (30) with a corresponding HΛ based on the ΛCDM model. Our
goal will be to �t the parameters ofHΛ to the functionHα, in order to determine
consistency with standard cosmology.

In ΛCDM, the density ρ is modeled as being composed of various fractions
of energy, based on how those fractions scale with expansion. If we only include
the most signi�cant fractions for a �at (k = 0) universe, the model reduces to
the following simpli�ed expression for HΛ.

HΛ = H0

√
Ωm (1 + z)

3
+ΩΛ (35)

In this simpli�ed model, there are two parameters, but only one degree of
freedom. Ωm represents the fraction attributed to standard matter, and ΩΛ the
fraction attributed to dark energy, and they must sum to unity. The Ωm term
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Figure 3: Using the commonly accepted value of ΩΛ = 68%, we see that Hα

intersects with HΛ at around z = 1.6, after which the functions appreciably
diverge from each other.

scales as the cube of redshift in order to capture the e�ect of uniform expansion
across all spatial dimensions. The ΩΛ term is considered to be a constant which
does not depend on expansion.

We can optimize the value of ΩΛ such that the expression for HΛ aligns as
closely as possible with the expression for Hα over some given range.

If the optimization is equally weighted across a range of z ≤ 2.1, we discover
a value for ΩΛ = 0.68. This is the commonly accepted value for dark energy,
and the range of optimization is roughly the range of our current astronomical
observations for Type Ia supernovae. However, if we extend that range out to
z ≤ 2.5, the optimized value for ΩΛ drops to 0.65.

A testable prediction of the �ctitious metric is that the value of dark energy
according to ΛCDM will need to decrease as the data from z > 2 begins to
dominate the �t for the model.

A A More Correct α

This appendix comes from an earlier paper by the author [1]. The factor α can
be expressed in an approximate form in terms of the gravitational potential Φ.

α ≈ 1 +
Φ

c2
(36)

The approximate de�nition for α is appropriate when the potential is su�-
ciently small, but we expect this approximation to eventually break down.

In order to create a more accurate value for α we can contemplate moving
across the potential di�erence over many small steps, accumulating factors of the
approximate value of α at each step, and then taking the limit of this process.

Let dΦ correspond to the potential di�erence due to taking a step dr which
is de�ned in terms of the total distance r divided into N steps, eventually taking
N to in�nity.
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dΦ = dr
∂Φ

∂r
=

r

N

∂Φ

∂r
(37)

For each step, we multiplicatively accumulate a new factor of our approxi-
mate version of α.

α = lim
N→∞

N∏
i

(
1 +

r

N

1

c2
∂Φi

∂r

)
(38)

Each factor has a slightly di�erent value of ∂Φi, but if they were all identical,
the product over N factors could be replaced by raising the factor to the N th

power, and we would recognize the exponent identity. This exponent identity
provides a hint for a path forward.

As N approaches in�nity, the factors in our product become equivalent to
exponents.

α = lim
N→∞

N∏
i

exp

(
r

N

1

c2
∂Φi

∂r

)
(39)

The product of a factor of exponents is equivalent to the exponent over a
sum of terms.

α = lim
N→∞

exp

(
N∑
i

r

N

1

c2
∂Φi

∂r

)
(40)

The sum becomes an integral as we take the limit.

α = exp

(
1

c2

∫
dr

∂Φ

∂r

)
= exp

(
1

c2

∫
dΦ

)
= exp

(
∆Φ

c2

)
(41)

B Integrating dv

The velocity v is expressed as the integral

v =

∫
H2

0

rG
vG

drG (42)

Using an integration variable x, the de�nite integral can be expressed as

H2
0

c

∫ rG

0

x√
1− exp

(
−H2

0x
2

c2

)dx (43)

Multiply the top and bottom by the exponent.

H2
0

c

∫ rG

0

x exp
(

H2
0x

2

c2

)
√
exp

(
2H2

0x
2

c2

)
− exp

(
H2

0x
2

c2

)dx (44)
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Make a u substitution.

u = exp

(
H2

0x
2

c2

)
(45)

du = 2
H2

0

c2
x exp

(
H2

0x
2

c2

)
dx (46)

Applying the substitution, and resetting the integration variable to x, the
integral is now.

c

2

∫ α2
G

1

dx√
x2 − x

(47)

We now make another u substitution

u = x− 1

2
(48)

du = dx (49)

x = u+
1

2
(50)

x2 = u2 + u+
1

4
(51)

Applying the substitution, and resetting the integration variable to x, the
integral is now.

c

2

∫ α2
G− 1

2

1
2

dx√
x2 − 1

4

= c

∫ α2
G− 1

2

1
2

dx√
(2x)

2 − 1
(52)

We now make another u substitution

u = 2x (53)

du = 2dx (54)

Applying the substitution, and resetting the integration variable to x, the
integral is now.

c

2

∫ 2α2
G−1

1

dx√
x2 − 1

(55)

We recognize the integrand in terms of a hyperbolic trig identity

1√
x2 − 1

=
d

dx
cosh−1 (x) (56)

The integral reduces to evaluating the inverse cosh at the end points.
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v =
c

2

(
cosh−1

(
2α2

G − 1
)
− cosh−1 (1)

)
(57)

The inverse cosh evaluated at 1 is 0.

v =
c

2
cosh−1

(
2α2

G − 1
)

(58)

C Determining Hα

Let the scale factor a be related to the �ctitious potential factor α through the
observable redshift.

a =
1

1 + z
= α−

√
α2 − 1 (59)

The dot operator represents a derivative with respect to the time coordinate
t of the local observer.

ȧ = −a
α̇√

α2 − 1
(60)

This leads to the expression for H.

H =
ȧ

a
= − α̇√

α2 − 1
(61)

We can use the de�nition of α in (21) to evaluate α̇.

α̇ =
vv̇

c2
(
1− v2

c2

)3/2 =
α3v

c2
v̇ (62)

Inserting the expression for α̇ into (61) gives

H = − α3v

c2
√
α2 − 1

v̇ = −α2

c
v̇ (63)

We can use the de�nition of v in (20) to evaluate v̇.

v̇ =
c

2

d

dt
cosh−1

(
2α2

g − 1
)

(64)

To facilitate this derivative we make a substitution

u = 2α2
g − 1 (65)

v̇ =
c

2

d

dt
cosh−1 (u) =

c

2

du

dt

d

du
cosh−1 (u) (66)

We can now employ the inverse hyperbolic trig identity.
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d

dx
cosh−1 (x) =

1√
x2 − 1

(67)

This identity holds for x > 1, which maps onto the domain of u for values
of α > 1, or in other words v > 0. We make use of this identity to complete the
evaluation for v̇.

v̇ = c
2αgα̇g√(

2α2
g − 1

)2 − 1
= c

2αgα̇g√
4α4

g − 4α2
g

=
c√

α2
g − 1

α̇g (68)

We can proceed with resolving the de�nition for H.

H = − α2√
α2
g − 1

α̇g (69)

We can continue by expressing the derivative of αg in terms of the derivative
of rg.

α̇g = αg
H2

0rg
c2

ṙg (70)

The next step for our H is

H = −α2H2
0

rg
cvg

ṙg (71)

The value ṙg is the derivative of the radial coordinate in Global Observer
space, with respect to Cosmic Time, i.e. the time of the Global Observer. If
we think of rg as representing the position of a photon moving through space,
then we can parameterize rg in terms of tg. In this case, the derivative is just
the speed of light, with an overall minus sign. The minus indicates that as rg
increases, we are talking about times that are further in the past.

ṙg = −c (72)

We can now express H in a form that ultimately depends on how cosmic
time tg is de�ned relative to standard time t.

H = α2H2
0

rg
vg

(73)

As rg → 0 we have vg → H0rg and α → 1, and therefore H → H0.

D Adding rotation to the metric

Converting the angular di�erentials into the local observer's coordinates could
potentially be very trivial, with dΩ0 = dΩ. However, we can take this opportu-
nity to account for the fact that the local observer could possibly be rotating.

16



We can express a constant rotation around the polar axis of the spherical coor-
dinate system in terms of a transformation on ϕ0.

ϕ = ϕ0 − ωtG (74)

The corresponding di�erentials are

dϕ = dϕ0 − ω
dtG
dt

dt (75)

Substituting the angular di�erentials into eq (16) produces

ds2G =

(
α′2 − r2G sin (θ)ω2 dtG

dt

2)
c2dt2−dr2

α′2 −r2GdΩ
2+

(
2r2G sin (θ)ω

dtG
dt

)
dϕdt

(76)
Isolating the factor scaling the c2dt2 term allows us to determine the deriva-

tive of time coordinates

dtG
dt

=
α′√

1 + r2G sin (θ)ω2
(77)

Substituting this derivative yields a metric which we call the cosmic metric.
This is the metric of the global observer, expressed in terms of the reference
frame of the local observer. The proposal of this paper is that this metric
describes distant observations incorporating the artifacts that arise due to the
non-inertial nature of our reference frame.

ds2G =
α′2c2dt2

(1 + r2G sin (θ)ω2)
− dr2

α′2 − r2GdΩ
2 +

(
2α′r2G sin (θ)ω

)
dϕdt√

1 + r2G sin (θ)ω2
(78)

We could take this development one step farther, and attempt to incorporate
something like centripetal acceleration, but that will not be done in this paper.
When concerned with e�ects that may be due to operating within a rotating
reference frame, we can use eq (78) otherwise we can stick with the simpler eq
(76), while discussing the cosmic metric.
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